Micromobility - Emerging Urban Transport Trends

ELEVATE - Our new micromobility project: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S030700/1

Frauke Behrendt, Associate Professor Transitions to Sustainable Mobility f.behrendt@tue.nl @FraukeBehrendt

Technology, Innovation & Society Group
“will continue to transform how people travel, goods are delivered, streets are designed, and cities evolve.”

(Shaheen & Cohen, 2019)
What is Micromobility?

- Station-based Bikesharing
- Dockless Bikesharing
- Micro e-cars
- E-Skateboards
- Standing Electric Scooter Sharing
- Moped-style Scooter Sharing
- Cargo e-bikes
- Monowheels
- Etc...
Classifications

- Definitions, classifications and regulatory frameworks for micromobility vary across the world (e.g. EU L categories)
- A range of micro-vehicles – such as standing e-scooters, e-skateboards and self-balancing vehicles – is often excluded, or classified as toys
Proposed Definition

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Type D</th>
</tr>
</thead>
<tbody>
<tr>
<td>unpowered or powered up to 25 km/h (16 mph)</td>
<td>powered with top speed between 25-45 km/h (16-28 mph)</td>
<td><35 kg (77 lb)</td>
<td>35 – 350 kg (77 – 770 lb)</td>
</tr>
<tr>
<td><35 kg (77 lb)</td>
<td>35 – 350 kg (77 – 770 lb)</td>
<td><35 kg (77 lb)</td>
<td>35 – 350 kg (77 – 770 lb)</td>
</tr>
</tbody>
</table>

Type A: Under 35kg, power supply (if any) is gradually reduced and cut off at a given speed limit, no higher than **25 km/h**

Overall: Devices/vehicles weighing up to 350 kg and whose power supply (if any) is gradually reduced and cut off at a given speed limit, no higher than **45 km/h**. Types A-D

Includes exclusively human-powered, e.g. bicycles, skateboards, scooters.

Note: account for variation of physical activity: public health

(OECD/ITF, 2020)

Micromobility - Emerging Urban Transport Trends @FraukeBehrendt
E-bike/scooter max. assisted speed: 25 km/hour

Traffic speed London: 11km/h
Benefits?

- Reduce congestion
- Less vehicle miles travelled
- Reduce emissions/improve air quality
- Mobility access for underserved populations
- Access to public transport (first/last-mile)
- Convenient door-to-door transport
- Increase demand for safe cycle paths, facilitate construction

(OECD/ITF, 2020; Oeschger et al., 2020; Shaheen & Cohen, 2019)
Focus: shared e-scooters.

Mode shift?

- 8-48% shift from car
- 45–49% shift from walking/cycling
- Some competition between micromobility, walking and public transport necessary for people to transition towards a car-free urban mobility?

(Zagorskas & Burinskiene, 2020; OECD/ITF, 2020)
Environmental impact: Shared e-scooters

- “When e-scooter usage replaces average personal automobile travel, we nearly universally realize a net reduction in environmental impacts”
- Scooter lifetime is key, but also redistribution

(Hollingsworth et al., 2019)
Who rides? Shared e-scooters

- Appeal to a broader demographic than cycling
- Some cities report reaching underserved populations, others young/male/higher income

-> Opportunities to reduce inequality

(OECD/ITF, 2020; Curl, Angela and Fitt, 2020)
Safety? E-scooters

- Traffic safety is improved by reducing the number of car and motorcycle trips in a city
- Road fatality not significantly more likely compared to bicycle
- Risk of emergency department visit similar to cyclists
- Two studies, however, found a higher risk of hospitalisation

(OECD/ITF, 2020)
Costs for cities?

- Shared micromobility can “support system change financially”
- Brisbane: 175,000 € /year fee for 1000 e-scooters
- Dallas: $1/day/scooter for investment in bike lanes

(Gössling, 2020:9)
Focus: E bikes

- Appeals to much broader range of users than conventional cycling
- At least ‘moderate intensity’ physical activity
- Our study showed 20% reduction in car milage

(Behrendt et al, 2015; Cairns et al, 2017)
Focus: Cargo e-bikes – private and freight

• Potential to replace 30% of urban transport trips
• +60% cargo bike sales in 2019 and +53% percent for 2020
• private and commercial grow equally fast

(Cairns and Sloman, 2019; http://cyclelogistics.eu/)
COVID impact

- Some schemes closed
- Some had major decrease
- Others had peak days
- Replacing public transport
- Some free, e.g. health workers

Individual

- E-bikes 2020: sales up 85% US, some companies up to 1000%
- E-bikes & scooters up 300% (Halfords, UK)
- Long waiting lists in many countries

Opportunities for (trying out) new modes and travel behaviours
Recommendations

- Provide clear and supportive regulations
- Allocate protected space for micromobility, traffic calming, keep pedestrians safe
- Focus on motor vehicles to make micromobility safe
- Define parking zones to avoid blocking of public space
- Collect data on micro-vehicle trips and crashes
- Proactively manage the safety performance of street networks (e.g. GPS)
- Include micromobility in training for road users
- Minimise kilometres by support vehicles
- Accessible public transport platforms and vehicles
- Collaboration PT transport planners and micromobility providers
- Provide training for diverse and disadvantaged groups
Consider Social Inclusion and Equity

- Equal access to all population groups
- Un- and Under-Banked Households (credits cards required?)
- Low-Income Affordability
- Digital Impoverishment (smartphone, data, literacy)
- Neighbourhood Service Availability
- Education and Outreach
- Access for People with Disabilities

(Shaheen & Cohen, 2019; Oeschger et al., 2020)
Data sharing (standardized/open) as condition for operating schemes to

- Understand micromobility impacts
- Identify gaps in transportation network
- Monitor equitable service standards
- Offer multimodal, real-time transportation information
- Evaluate policies

(Shaheen & Cohen, 2019; https://policydata.numo.global/)
What if…

(UK Parliament, 2019)
...half the car trips under 8km could be replaced with micromobility?
What if...public investment in micromobility was similar to electric cars?

- Subsidies for buying an electric car (Germany 6k€/car)
- Public investment in charging infrastructure (e.g. France 50 million €)
- 1 slow charger costs 2k€
- Where provided: subsidies for micromobility (esp. e-bikes) very popular and used quickly (e.g. 48 hours/Berlin, 3 weeks/Oslo)
- Electric Mobility = Micromobility (not just electric cars)

(Behrendt 2017; Cairns et al 2019)
Rapid City Action for Micromobility

• “Because these new services are no longer directly procured by local governments in most cases,
• cities have had to rapidly develop new permitting and licensing regulations
• to maximize and harness their positive transformative potential to increase access, safety and economic opportunity for all residents
• while also reducing congestion, vehicle miles travelled, carbon emissions” https://playbook.t4america.org/

ELEVATE - our new micromobility project: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S030700/1
Key Policy Resources Shared Micromobility

https://policydata.numo.global/

References

Image References

https://time.com/5864707/paris-green-city/
https://www.theverge.com/2020/4/16/21224164/lime-buys-boosted-electric-skateboard-scooter-acquisition-bankrupt
https://webecoist.momtastic.com/2017/01/10/won-wheel-segways-one-s2-electric-unicycle/2/
https://topgear.nl/autonieuws/prijs-citroen-ami-one-is-bekend/
Report by shasheen
https://www.flickr.com/photos/ekkidee/44871855041/sizes/k/
https://www.flickr.com/photos/31779113@N06/32862553993/sizes/k/
https://learn.sharedusemobilitycenter.org/learning_module/electric-scootershare/
https://www.efe.com/efe/english/destacada/electric-scooters-solution-or-problem-for-chaotic-brazil-traffic-situation/50000261-3988231
https://metromobility.io/scooters/
https://www.urbanarrow.com/
https://www.bestelauto.nl/nieuws/dhl-met-de-cargobike-miami-in/16060/
https://www.flickr.com/photos/engelbart/50309123001/sizes/c/
https://www.flickr.com/photos/pix-4-2-day/47797746091/sizes/k/
https://publications.parliament.uk/pa/cm201719/cmselect/cmtrans/1487/148705.htm